• Beranda
  • Website Perpustakaan
  • Panduan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Penanda Bagikan

TA DIGITAL

Rancang Bangun Sistem Cerdas Klasifikasi Hama Padi Berbasis Mobile Menggunakan CNN-Based Deep Learning = Mobile-Based Rice Pest Classification Intelligent System Using CNN-Based Deep Learning

Karta Kusuma - Nama Orang; Linda Ayu Lestari - Nama Orang; PRAYITNO - Nama Orang; Idhawati Hestiningsih - Nama Orang;

Rice is one of the important crops in the economy and as the main food commodity worldwide after wheat and corn. However, rice cultivation often experiences a decrease in crop yields due to diseases and pests that inhibit plant growth. Therefore, rice pest and disease control has always been a priority in the development of the agricultural sector. One of the problems in rice pest control is the detection of the right type of pest so that the handling is more optimal, and the use of pesticides becomes more effective and efficient. In this case, technological developments open up opportunities for optimal pest control with the help of devices. The goal is to utilize machine learning models, to recognize the type of pest and provide recommendations on the handling that should be given. Therefore, a Mobile-based Rice Pest Classification Smart System was built using CNN-Based Deep Learning to make the rice pest control process easier and more effective, with the development of models that have the best performance. The method used in this study is using the waterfall method, where each step of the research is carried out sequentially. It starts with needs analysis or planning, application design, implementation, testing and evaluation or improvement. Testing of mobile-based rice pest classification applications with CNN – Based Deep Learning can run well with a functional satisfaction level of 90% from 10 respondents of the Farmer Group management, and a user satisfaction level of 95% from 20 farmer respondents. The advantage of this application is that it provides a menu to detect rice pests with pictures as well as being able to detect rice pests in real time. So that rice production can be more effective and optimal.


Fulltext
  • Harap masuk untuk melihat lampiran
Informasi Detail
Judul Seri
-
No. Panggil
IK 019 2023
Penerbit
Semarang : Politeknik Negeri Semarang., 2023
Deskripsi Fisik
xiv, 66 hal.; ilus, 30 cm
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
NONE
Tipe Isi
text
Tipe Media
computer
Tipe Pembawa
online resource
Edisi
-
Subjek
mobile
deep learning
HAMA PADI
CNN-BASED
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Karta Kusuma
Versi lain/terkait

Tidak tersedia versi lain

Komentar

Anda harus masuk sebelum memberikan komentar

  • Panduan
  • Area Anggota

Tentang Kami

Si-Repo adalah platform digital yang dikelola oleh UPA Perpustakaan Politeknik Negeri Semarang, menyimpan karya ilmiah seperti Tugas Akhir, Skripsi, dan Tesis dari sivitas akademika Polines, untuk mendukung kebutuhan akademik, penelitian, dan pengembangan.

Pengunjung Web

Hari ini : Minggu ini : Bulan ini : Total :

© 2025 — Perpustakaan Politeknik Negeri Semarang

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?